Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Finding Reproduction Numbers for Epidemic Models & Predator-Prey Models of Arbitrary Finite Dimension Using The Generalized Linear Chain Trick (2008.06768v2)

Published 15 Aug 2020 in q-bio.PE, math.DS, and q-bio.QM

Abstract: Reproduction numbers, like the basic reproduction number $\mathcal{R}_0$, play an important role in the analysis and application of dynamic models, including contagion models and ecological population models. One difficulty in deriving these quantities is that they must be computed on a model-by-model basis, since it is typically impractical to obtain general reproduction number expressions applicable to a family of related models, especially if these are of different dimensions. For example, this is typically the case for SIR-type infectious disease models derived using the linear chain trick (LCT). Here we show how to find general reproduction number expressions for such models families (which vary in their number of state variables) using the next generation operator approach in conjunction with the generalized linear chain trick (GLCT). We further show how the GLCT enables modelers to draw insights from these results by leveraging theory and intuition from continuous time Markov chains (CTMCs) and their absorption time distributions (i.e., phase-type probability distributions). To do this, we first review the GLCT and other connections between mean-field ODE model assumptions, CTMCs, and phase-type distributions. We then apply this technique to find reproduction numbers for two sets of models: a family of generalized SEIRS models of arbitrary finite dimension, and a generalized family of finite dimensional predator-prey (Rosenzweig-MacArthur type) models. These results highlight the utility of the GLCT for the derivation and analysis of mean field ODE models, especially when used in conjunction with theory from CTMCs and their associated phase-type distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube