Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous Interventions Reduce the Spread of COVID-19 in Simulations on Real Mobility Data (2008.06549v3)

Published 14 Aug 2020 in cs.SI and physics.soc-ph

Abstract: Major interventions have been introduced worldwide to slow down the spread of the SARS-CoV-2 virus. Large-scale lockdowns of human movements are effective in reducing the spread, but they come at a cost of significantly limited societal functions. We show that natural human movements are statistically diverse, and the spread of the disease is significantly influenced by a small group of active individuals and gathering venues. We find that interventions focused on these most mobile individuals and popular venues reduce both the peak infection rate and the total infected population while retaining high social activity levels. These trends are seen consistently in simulations with real human mobility data of different scales, resolutions, and modalities from multiple cities across the world. The observation implies that compared to broad sweeping interventions, more heterogeneous strategies that are targeted based on the network effects in human mobility provide a better balance between pandemic control and regular social activities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Haotian Wang (60 papers)
  2. Abhirup Ghosh (145 papers)
  3. Jiaxin Ding (20 papers)
  4. Rik Sarkar (30 papers)
  5. Jie Gao (185 papers)