Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum heat statistics with time-evolving matrix product operators

Published 14 Aug 2020 in quant-ph and cond-mat.stat-mech | (2008.06491v3)

Abstract: We present a numerically exact method to compute the full counting statistics of heat transfer in non-Markovian open quantum systems, which is based on the time-evolving matrix product operator (TEMPO) algorithm. This approach is applied to the paradigmatic spin-boson model in order to calculate the mean and fluctuations of the heat transferred to the environment during thermal equilibration. We show that system-reservoir correlations make a significant contribution to the heat statistics at low temperature and present a variational theory that quantitatively explains our numerical results. We also demonstrate a fluctuation-dissipation relation connecting the mean and variance of the heat distribution at high temperature. Our results reveal that system-bath interactions make a significant contribution to heat transfer even when the dynamics of the open system is effectively Markovian. The method presented here provides a flexible and general tool to predict the fluctuations of heat transfer in open quantum systems in non-perturbative regimes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.