Papers
Topics
Authors
Recent
2000 character limit reached

Towards Visually Explaining Similarity Models

Published 13 Aug 2020 in cs.CV, cs.AI, cs.LG, and stat.ML | (2008.06035v2)

Abstract: We consider the problem of visually explaining similarity models, i.e., explaining why a model predicts two images to be similar in addition to producing a scalar score. While much recent work in visual model interpretability has focused on gradient-based attention, these methods rely on a classification module to generate visual explanations. Consequently, they cannot readily explain other kinds of models that do not use or need classification-like loss functions (e.g., similarity models trained with a metric learning loss). In this work, we bridge this crucial gap, presenting a method to generate gradient-based visual attention for image similarity predictors. By relying solely on the learned feature embedding, we show that our approach can be applied to any kind of CNN-based similarity architecture, an important step towards generic visual explainability. We show that our resulting attention maps serve more than just interpretability; they can be infused into the model learning process itself with new trainable constraints. We show that the resulting similarity models perform, and can be visually explained, better than the corresponding baseline models trained without these constraints. We demonstrate our approach using extensive experiments on three different kinds of tasks: generic image retrieval, person re-identification, and low-shot semantic segmentation.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.