Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance Regularization for Accelerating Stochastic Optimization (2008.05969v1)

Published 13 Aug 2020 in cs.LG, math.OC, and stat.ML

Abstract: While nowadays most gradient-based optimization methods focus on exploring the high-dimensional geometric features, the random error accumulated in a stochastic version of any algorithm implementation has not been stressed yet. In this work, we propose a universal principle which reduces the random error accumulation by exploiting statistic information hidden in mini-batch gradients. This is achieved by regularizing the learning-rate according to mini-batch variances. Due to the complementarity of our perspective, this regularization could provide a further improvement for stochastic implementation of generic 1st order approaches. With empirical results, we demonstrated the variance regularization could speed up the convergence as well as stabilize the stochastic optimization.

Summary

We haven't generated a summary for this paper yet.