Papers
Topics
Authors
Recent
Search
2000 character limit reached

Recurrent Deconvolutional Generative Adversarial Networks with Application to Text Guided Video Generation

Published 13 Aug 2020 in cs.CV | (2008.05856v1)

Abstract: This paper proposes a novel model for video generation and especially makes the attempt to deal with the problem of video generation from text descriptions, i.e., synthesizing realistic videos conditioned on given texts. Existing video generation methods cannot be easily adapted to handle this task well, due to the frame discontinuity issue and their text-free generation schemes. To address these problems, we propose a recurrent deconvolutional generative adversarial network (RD-GAN), which includes a recurrent deconvolutional network (RDN) as the generator and a 3D convolutional neural network (3D-CNN) as the discriminator. The RDN is a deconvolutional version of conventional recurrent neural network, which can well model the long-range temporal dependency of generated video frames and make good use of conditional information. The proposed model can be jointly trained by pushing the RDN to generate realistic videos so that the 3D-CNN cannot distinguish them from real ones. We apply the proposed RD-GAN to a series of tasks including conventional video generation, conditional video generation, video prediction and video classification, and demonstrate its effectiveness by achieving well performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.