Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying candidate routines for Robotic Process Automation from unsegmented UI logs (2008.05782v2)

Published 13 Aug 2020 in cs.SE

Abstract: Robotic Process Automation (RPA) is a technology to develop software bots that automate repetitive sequences of interactions between users and software applications (a.k.a. routines). To take full advantage of this technology, organizations need to identify and to scope their routines. This is a challenging endeavor in large organizations, as routines are usually not concentrated in a handful of processes, but rather scattered across the process landscape. Accordingly, the identification of routines from User Interaction (UI) logs has received significant attention. Existing approaches to this problem assume that the UI log is segmented, meaning that it consists of traces of a task that is presupposed to contain one or more routines. However, a UI log usually takes the form of a single unsegmented sequence of events. This paper presents an approach to discover candidate routines from unsegmented UI logs in the presence of noise, i.e. events within or between routine instances that do not belong to any routine. The approach is implemented as an open-source tool and evaluated using synthetic and real-life UI logs.

Citations (27)

Summary

We haven't generated a summary for this paper yet.