Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Efficient Confidence Measure-Based Evaluation Metric for Breast Cancer Screening Using Bayesian Neural Networks (2008.05566v1)

Published 12 Aug 2020 in cs.LG and eess.IV

Abstract: Screening mammograms is the gold standard for detecting breast cancer early. While a good amount of work has been performed on mammography image classification, especially with deep neural networks, there has not been much exploration into the confidence or uncertainty measurement of the classification. In this paper, we propose a confidence measure-based evaluation metric for breast cancer screening. We propose a modular network architecture, where a traditional neural network is used as a feature extractor with transfer learning, followed by a simple Bayesian neural network. Utilizing a two-stage approach helps reducing the computational complexity, making the proposed framework attractive for wider deployment. We show that by providing the medical practitioners with a tool to tune two hyperparameters of the Bayesian neural network, namely, fraction of sampled number of networks and minimum probability, the framework can be adapted as needed by the domain expert. Finally, we argue that instead of just a single number such as accuracy, a tuple (accuracy, coverage, sampled number of networks, and minimum probability) can be utilized as an evaluation metric of our framework. We provide experimental results on the CBIS-DDSM dataset, where we show the trends in accuracy-coverage tradeoff while tuning the two hyperparameters. We also show that our confidence tuning results in increased accuracy with a reduced set of images with high confidence when compared to the baseline transfer learning. To make the proposed framework readily deployable, we provide (anonymized) source code with reproducible results at https://git.io/JvRqE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube