Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion

Published 12 Aug 2020 in math.OC and cs.MA | (2008.05387v1)

Abstract: The paper considers distributed gradient flow (DGF) for multi-agent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The paper has two main contributions. First, the paper considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The paper then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the paper proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion paper, analogous results are derived for discrete-time algorithms.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.