Papers
Topics
Authors
Recent
2000 character limit reached

On Geodesic Congruences and the Raychaudhuri Equations in $\textrm{SAdS}_4$ Spacetime

Published 12 Aug 2020 in gr-qc | (2008.05326v1)

Abstract: In this article, we look into geodesics in the Schwarzschild-Anti-de Sitter metric in (3+1) spacetime dimensions. We investigate the class of marginally bound geodesics (timelike and null), while comparing their behavior with the normal Schwarzschild metric. Using $\textit{Mathematica}$, we calculate the shear and rotation tensors, along with other components of the Raychaudhuri equation in this metric and we argue that marginally bound timelike geodesics, in the equatorial plane, always have a turning point, while their null analogues have at least one family of geodesics that are unbound. We also present associated plots for the geodesics and geodesic congruences, in the equatorial plane.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.