Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On Geodesic Congruences and the Raychaudhuri Equations in $\textrm{SAdS}_4$ Spacetime (2008.05326v1)

Published 12 Aug 2020 in gr-qc

Abstract: In this article, we look into geodesics in the Schwarzschild-Anti-de Sitter metric in (3+1) spacetime dimensions. We investigate the class of marginally bound geodesics (timelike and null), while comparing their behavior with the normal Schwarzschild metric. Using $\textit{Mathematica}$, we calculate the shear and rotation tensors, along with other components of the Raychaudhuri equation in this metric and we argue that marginally bound timelike geodesics, in the equatorial plane, always have a turning point, while their null analogues have at least one family of geodesics that are unbound. We also present associated plots for the geodesics and geodesic congruences, in the equatorial plane.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube