Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Temperature Scaling for Probability Calibration (2008.05105v2)

Published 12 Aug 2020 in cs.CV

Abstract: For semantic segmentation, label probabilities are often uncalibrated as they are typically only the by-product of a segmentation task. Intersection over Union (IoU) and Dice score are often used as criteria for segmentation success, while metrics related to label probabilities are not often explored. However, probability calibration approaches have been studied, which match probability outputs with experimentally observed errors. These approaches mainly focus on classification tasks, but not on semantic segmentation. Thus, we propose a learning-based calibration method that focuses on multi-label semantic segmentation. Specifically, we adopt a convolutional neural network to predict local temperature values for probability calibration. One advantage of our approach is that it does not change prediction accuracy, hence allowing for calibration as a post-processing step. Experiments on the COCO, CamVid, and LPBA40 datasets demonstrate improved calibration performance for a range of different metrics. We also demonstrate the good performance of our method for multi-atlas brain segmentation from magnetic resonance images.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhipeng Ding (6 papers)
  2. Xu Han (270 papers)
  3. Peirong Liu (18 papers)
  4. Marc Niethammer (80 papers)
Citations (70)

Summary

We haven't generated a summary for this paper yet.