Papers
Topics
Authors
Recent
2000 character limit reached

Experimental Analysis of Legendre Decomposition in Machine Learning

Published 12 Aug 2020 in cs.LG and stat.ML | (2008.05095v2)

Abstract: In this technical report, we analyze Legendre decomposition for non-negative tensor in theory and application. In theory, the properties of dual parameters and dually flat manifold in Legendre decomposition are reviewed, and the process of tensor projection and parameter updating is analyzed. In application, a series of verification experiments and clustering experiments with parameters on submanifold were carried out, hoping to find an effective lower dimensional representation of the input tensor. The experimental results show that the parameters on submanifold have no ability to be directly used as low-rank representations. Combined with analysis, we connect Legendre decomposition with neural networks and low-rank representation applications, and put forward some promising prospects.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.