Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning For Sequence-to-sequence Text-to-speech For Low-resource Languages (2008.04549v1)

Published 11 Aug 2020 in eess.AS and cs.SD

Abstract: Recently, sequence-to-sequence models with attention have been successfully applied in Text-to-speech (TTS). These models can generate near-human speech with a large accurately-transcribed speech corpus. However, preparing such a large data-set is both expensive and laborious. To alleviate the problem of heavy data demand, we propose a novel unsupervised pre-training mechanism in this paper. Specifically, we first use Vector-quantization Variational-Autoencoder (VQ-VAE) to ex-tract the unsupervised linguistic units from large-scale, publicly found, and untranscribed speech. We then pre-train the sequence-to-sequence TTS model by using the<unsupervised linguistic units, audio>pairs. Finally, we fine-tune the model with a small amount of<text, audio>paired data from the target speaker. As a result, both objective and subjective evaluations show that our proposed method can synthesize more intelligible and natural speech with the same amount of paired training data. Besides, we extend our proposed method to the hypothesized low-resource languages and verify the effectiveness of the method using objective evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Haitong Zhang (11 papers)
  2. Yue Lin (41 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.