Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Design based incomplete U-statistics (2008.04348v1)

Published 10 Aug 2020 in math.ST, stat.CO, and stat.TH

Abstract: U-statistics are widely used in fields such as economics, machine learning, and statistics. However, while they enjoy desirable statistical properties, they have an obvious drawback in that the computation becomes impractical as the data size $n$ increases. Specifically, the number of combinations, say $m$, that a U-statistic of order $d$ has to evaluate is $O(nd)$. Many efforts have been made to approximate the original U-statistic using a small subset of combinations since Blom (1976), who referred to such an approximation as an incomplete U-statistic. To the best of our knowledge, all existing methods require $m$ to grow at least faster than $n$, albeit more slowly than $nd$, in order for the corresponding incomplete U-statistic to be asymptotically efficient in terms of the mean squared error. In this paper, we introduce a new type of incomplete U-statistic that can be asymptotically efficient, even when $m$ grows more slowly than $n$. In some cases, $m$ is only required to grow faster than $\sqrt{n}$. Our theoretical and empirical results both show significant improvements in the statistical efficiency of the new incomplete U-statistic.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube