Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Training with Fast Gradient Projection Method against Synonym Substitution based Text Attacks (2008.03709v4)

Published 9 Aug 2020 in cs.CL and cs.LG

Abstract: Adversarial training is the most empirically successful approach in improving the robustness of deep neural networks for image classification.For text classification, however, existing synonym substitution based adversarial attacks are effective but not efficient to be incorporated into practical text adversarial training. Gradient-based attacks, which are very efficient for images, are hard to be implemented for synonym substitution based text attacks due to the lexical, grammatical and semantic constraints and the discrete text input space. Thereby, we propose a fast text adversarial attack method called Fast Gradient Projection Method (FGPM) based on synonym substitution, which is about 20 times faster than existing text attack methods and could achieve similar attack performance. We then incorporate FGPM with adversarial training and propose a text defense method called Adversarial Training with FGPM enhanced by Logit pairing (ATFL). Experiments show that ATFL could significantly improve the model robustness and block the transferability of adversarial examples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.