The Graham--Knuth--Patashnik recurrence: Symmetries and continued fractions (2008.03070v2)
Abstract: We study the triangular array defined by the Graham--Knuth--Patashnik recurrence $T(n,k) = (\alpha n + \beta k + \gamma)\, T(n-1,k)+(\alpha' n + \beta' k + \gamma') \, T(n-1,k-1)$ with initial condition $T(0,k) = \delta_{k0}$ and parameters $\mathbf{\mu} = (\alpha,\beta,\gamma, \alpha',\beta',\gamma')$. We show that the family of arrays $T(\mathbf{\mu})$ is invariant under a 48-element discrete group isomorphic to $S_3 \times D_4$. Our main result is to determine all parameter sets $\mathbf{\mu} \in \mathbb{C}6$ for which the ordinary generating function $f(x,t) = \sum_{n,k=0}\infty T(n,k) \, xk tn$ is given by a Stieltjes-type continued fraction in $t$ with coefficients that are polynomials in $x$. We also exhibit some special cases in which $f(x,t)$ is given by a Thron-type or Jacobi-type continued fraction in $t$ with coefficients that are polynomials in $x$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.