Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modeling of time series using random forests: theoretical developments

Published 6 Aug 2020 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH | (2008.02479v1)

Abstract: In this paper we study asymptotic properties of random forests within the framework of nonlinear time series modeling. While random forests have been successfully applied in various fields, the theoretical justification has not been considered for their use in a time series setting. Under mild conditions, we prove a uniform concentration inequality for regression trees built on nonlinear autoregressive processes and, subsequently, we use this result to prove consistency for a large class of random forests. The results are supported by various simulations.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.