Papers
Topics
Authors
Recent
Search
2000 character limit reached

Group Activity Prediction with Sequential Relational Anticipation Model

Published 6 Aug 2020 in cs.CV | (2008.02441v1)

Abstract: In this paper, we propose a novel approach to predict group activities given the beginning frames with incomplete activity executions. Existing action prediction approaches learn to enhance the representation power of the partial observation. However, for group activity prediction, the relation evolution of people's activity and their positions over time is an important cue for predicting group activity. To this end, we propose a sequential relational anticipation model (SRAM) that summarizes the relational dynamics in the partial observation and progressively anticipates the group representations with rich discriminative information. Our model explicitly anticipates both activity features and positions by two graph auto-encoders, aiming to learn a discriminative group representation for group activity prediction. Experimental results on two popularly used datasets demonstrate that our approach significantly outperforms the state-of-the-art activity prediction methods.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.