Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Model Image Annotation Platform with Active Learning (2008.02421v1)

Published 6 Aug 2020 in cs.CV

Abstract: We have seen significant leapfrog advancement in machine learning in recent decades. The central idea of machine learnability lies on constructing learning algorithms that learn from good data. The availability of more data being made publicly available also accelerates the growth of AI in recent years. In the domain of computer vision, the quality of image data arises from the accuracy of image annotation. Labeling large volume of image data is a daunting and tedious task. This work presents an End-to-End pipeline tool for object annotation and recognition aims at enabling quick image labeling. We have developed a modular image annotation platform which seamlessly incorporates assisted image annotation (annotation assistance), active learning and model training and evaluation. Our approach provides a number of advantages over current image annotation tools. Firstly, the annotation assistance utilizes reference hierarchy and reference images to locate the objects in the images, thus reducing the need for annotating the whole object. Secondly, images can be annotated using polygon points allowing for objects of any shape to be annotated. Thirdly, it is also interoperable across several image models, and the tool provides an interface for object model training and evaluation across a series of pre-trained models. We have tested the model and embeds several benchmarking deep learning models. The highest accuracy achieved is 74%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ng Hui Xian Lynnette (1 paper)
  2. Henry Ng Siong Hock (1 paper)
  3. Nguwi Yok Yen (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.