Papers
Topics
Authors
Recent
Search
2000 character limit reached

Jordan types with small parts for Artinian Gorenstein algebras of codimension three

Published 5 Aug 2020 in math.AC | (2008.02338v2)

Abstract: We study Jordan types of linear forms for graded Artinian Gorenstein algebras having arbitrary codimension. We introduce rank matrices of linear forms for such algebras that represent the ranks of multiplication maps in various degrees. We show that there is a 1-1 correspondence between rank matrices and Jordan degree types. For Artinian Gorenstein algebras with codimension three we classify all rank matrices that occur for linear forms with vanishing third power. As a consequence, we show for such algebras that the possible Jordan types with parts of length at most four are uniquely determined by at most three parameters.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.