Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Optimization with Machine Learning Algorithms Towards Anomaly Detection (2008.02327v1)

Published 5 Aug 2020 in cs.LG, cs.NI, and stat.ML

Abstract: Network attacks have been very prevalent as their rate is growing tremendously. Both organization and individuals are now concerned about their confidentiality, integrity and availability of their critical information which are often impacted by network attacks. To that end, several previous machine learning-based intrusion detection methods have been developed to secure network infrastructure from such attacks. In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique to tune the parameters of Support Vector Machine with Gaussian Kernel (SVM-RBF), Random Forest (RF), and k-Nearest Neighbor (k-NN) algorithms. The performance of the considered algorithms is evaluated using the ISCX 2012 dataset. Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.

Citations (110)

Summary

We haven't generated a summary for this paper yet.