Holomorphic Poisson Field Theories
Abstract: We construct a class of quantum field theories depending on the data of a holomorphic Poisson structure on a piece of the underlying spacetime. The main technical tool relies on a characterization of deformations and anomalies of such theories in terms of the Gelfand-Fuchs cohomology of formal Hamiltonian vector fields. In the case that the Poisson structure is non-degenerate such theories are topological in a certain weak sense, which we refer to as "de Rham topological". While the Lie algebra of translations acts in a homotopically trivial way, we will show that the space of observables of such a theory does not define an E_n-algebra. Additionally, we will highlight a conjectural relationship to theories of supergravity in four and five dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.