Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duality Diagram Similarity: a generic framework for initialization selection in task transfer learning (2008.02107v1)

Published 5 Aug 2020 in cs.CV and cs.LG

Abstract: In this paper, we tackle an open research question in transfer learning, which is selecting a model initialization to achieve high performance on a new task, given several pre-trained models. We propose a new highly efficient and accurate approach based on duality diagram similarity (DDS) between deep neural networks (DNNs). DDS is a generic framework to represent and compare data of different feature dimensions. We validate our approach on the Taskonomy dataset by measuring the correspondence between actual transfer learning performance rankings on 17 taskonomy tasks and predicted rankings. Computing DDS based ranking for $17\times17$ transfers requires less than 2 minutes and shows a high correlation ($0.86$) with actual transfer learning rankings, outperforming state-of-the-art methods by a large margin ($10\%$) on the Taskonomy benchmark. We also demonstrate the robustness of our model selection approach to a new task, namely Pascal VOC semantic segmentation. Additionally, we show that our method can be applied to select the best layer locations within a DNN for transfer learning on 2D, 3D and semantic tasks on NYUv2 and Pascal VOC datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kshitij Dwivedi (6 papers)
  2. Jiahui Huang (54 papers)
  3. Radoslaw Martin Cichy (4 papers)
  4. Gemma Roig (41 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.