Papers
Topics
Authors
Recent
2000 character limit reached

Attacking and Defending Machine Learning Applications of Public Cloud (2008.02076v1)

Published 27 Jul 2020 in cs.LG and cs.CR

Abstract: Adversarial attack breaks the boundaries of traditional security defense. For adversarial attack and the characteristics of cloud services, we propose Security Development Lifecycle for Machine Learning applications, e.g., SDL for ML. The SDL for ML helps developers build more secure software by reducing the number and severity of vulnerabilities in ML-as-a-service, while reducing development cost.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.