Papers
Topics
Authors
Recent
Search
2000 character limit reached

Follow the Object: Curriculum Learning for Manipulation Tasks with Imagined Goals

Published 5 Aug 2020 in cs.LG, cs.AI, cs.RO, and stat.ML | (2008.02066v2)

Abstract: Learning robot manipulation through deep reinforcement learning in environments with sparse rewards is a challenging task. In this paper we address this problem by introducing a notion of imaginary object goals. For a given manipulation task, the object of interest is first trained to reach a desired target position on its own, without being manipulated, through physically realistic simulations. The object policy is then leveraged to build a predictive model of plausible object trajectories providing the robot with a curriculum of incrementally more difficult object goals to reach during training. The proposed algorithm, Follow the Object (FO), has been evaluated on 7 MuJoCo environments requiring increasing degree of exploration, and has achieved higher success rates compared to alternative algorithms. In particularly challenging learning scenarios, e.g. where the object's initial and target positions are far apart, our approach can still learn a policy whereas competing methods currently fail.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.