Ramsey theory for layered semigroups
Abstract: We further develop the theory of layered semigroups, as introduced by Farah, Hindman and McLeod, providing a general framework to prove Ramsey statements about such a semigroup $S$. By nonstandard and topological arguments, we show Ramsey statements on $S$ are implied by the existence of "coherent" sequences in $S$. This framework allows us to formalise and prove many results in Ramsey theory, including Gowers' $\mathrm{FIN}_k$ theorem, the Graham-Rothschild theorem, and Hindman's finite sums theorem. Other highlights include: a simple nonstandard proof of the Graham-Rothschild theorem for strong variable words; a nonstandard proof of Bergelson-Blass-Hindman's partition theorem for located variable words, using a result of Carlson, Hindman and Strauss; and a common generalisation of the latter result and Gowers' theorem, which can be proven in our framework.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.