Papers
Topics
Authors
Recent
2000 character limit reached

More Than Privacy: Applying Differential Privacy in Key Areas of Artificial Intelligence

Published 5 Aug 2020 in cs.CR, cs.LG, and stat.ML | (2008.01916v1)

Abstract: AI has attracted a great deal of attention in recent years. However, alongside all its advancements, problems have also emerged, such as privacy violations, security issues and model fairness. Differential privacy, as a promising mathematical model, has several attractive properties that can help solve these problems, making it quite a valuable tool. For this reason, differential privacy has been broadly applied in AI but to date, no study has documented which differential privacy mechanisms can or have been leveraged to overcome its issues or the properties that make this possible. In this paper, we show that differential privacy can do more than just privacy preservation. It can also be used to improve security, stabilize learning, build fair models, and impose composition in selected areas of AI. With a focus on regular machine learning, distributed machine learning, deep learning, and multi-agent systems, the purpose of this article is to deliver a new view on many possibilities for improving AI performance with differential privacy techniques.

Citations (113)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.