Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Multiple Changepoint Detection for Functional Data Sequences (2008.01889v3)

Published 5 Aug 2020 in stat.ME

Abstract: We propose the Multiple Changepoint Isolation (MCI) method for detecting multiple changes in the mean and covariance of a functional process. We first introduce a pair of projections to represent the variability "between" and "within" the functional observations. We then present an augmented fused lasso procedure to split the projections into multiple regions robustly. These regions act to isolate each changepoint away from the others so that the powerful univariate CUSUM statistic can be applied region-wise to identify the changepoints. Simulations show that our method accurately detects the number and locations of changepoints under many different scenarios. These include light and heavy tailed data, data with symmetric and skewed distributions, sparsely and densely sampled changepoints, and mean and covariance changes. We show that our method outperforms a recent multiple functional changepoint detector and several univariate changepoint detectors applied to our proposed projections. We also show that MCI is more robust than existing approaches and scales linearly with sample size. Finally, we demonstrate our method on a large time series of water vapor mixing ratio profiles from atmospheric emitted radiance interferometer measurements.

Summary

We haven't generated a summary for this paper yet.