Papers
Topics
Authors
Recent
Search
2000 character limit reached

Attribute-aware Diversification for Sequential Recommendations

Published 3 Aug 2020 in cs.IR | (2008.00783v1)

Abstract: Users prefer diverse recommendations over homogeneous ones. However, most previous work on Sequential Recommenders does not consider diversity, and strives for maximum accuracy, resulting in homogeneous recommendations. In this paper, we consider both accuracy and diversity by presenting an Attribute-aware Diversifying Sequential Recommender (ADSR). Specifically, ADSR utilizes available attribute information when modeling a user's sequential behavior to simultaneously learn the user's most likely item to interact with, and their preference of attributes. Then, ADSR diversifies the recommended items based on the predicted preference for certain attributes. Experiments on two benchmark datasets demonstrate that ADSR can effectively provide diverse recommendations while maintaining accuracy.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.