Papers
Topics
Authors
Recent
2000 character limit reached

Learning-based link prediction analysis for Facebook100 network

Published 1 Aug 2020 in cs.SI and cs.LG | (2008.00308v2)

Abstract: In social network science, Facebook is one of the most interesting and widely used social networks and media platforms. Its data contributed to significant evolution of social network research and link prediction techniques, which are important tools in link mining and analysis. This paper gives the first comprehensive analysis of link prediction on the Facebook100 network. We study performance and evaluate multiple machine learning algorithms on different feature sets. To derive features we use network embeddings and topology-based techniques such as node2vec and vectors of similarity metrics. In addition, we also employ node-based features, which are available for Facebook100 network, but rarely found in other datasets. The adopted approaches are discussed and results are clearly presented. Lastly, we compare and review applied models, where overall performance and classification rates are presented.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.