Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imitative Planning using Conditional Normalizing Flow (2007.16162v3)

Published 31 Jul 2020 in cs.RO, cs.AI, and cs.LG

Abstract: A popular way to plan trajectories in dynamic urban scenarios for Autonomous Vehicles is to rely on explicitly specified and hand crafted cost functions, coupled with random sampling in the trajectory space to find the minimum cost trajectory. Such methods require a high number of samples to find a low-cost trajectory and might end up with a highly suboptimal trajectory given the planning time budget. We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs). Our key insight is to learn a sampling policy in a low-dimensional latent space of expert-like trajectories, out of which the best sample is selected for execution. By modeling the trajectory planner's cost manifold as an energy function, we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space. Finally, we demonstrate the effectiveness of our approach on real-world datasets over IL and hand-constructed trajectory sampling techniques.

Citations (6)

Summary

We haven't generated a summary for this paper yet.