Chaotic dynamics in a simple predator-prey model with discrete delay
Abstract: A discrete delay is included to model the time between the capture of the prey and its conversion to viable biomass in the simplest classical Gause type predator-prey model that has equilibrium dynamics without delay. As the delay increases from zero, the coexistence equilibrium undergoes a supercritical Hopf bifurcation, two saddle-node bifurcations of limit cycles, and a cascade of period doublings, eventu1ally leading to chaos. The resulting periodic orbits and the strange attractor resemble their counterparts for the Mackey-Glass equation. Due to the global stability of the system without delay, these complicated dynamics can be solely attributed to the introduction of the delay. Since many models include predator-prey like interactions as submodels, this study emphasizes the importance of understanding the implications of overlooking delay in such models on the reliability of the model-based predictions, especially since the temperature is known to have an effect on the length of certain delays.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.