Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Drift Detection in Deep Learning Classifiers (2007.16109v1)

Published 31 Jul 2020 in stat.AP, cs.LG, and stat.ML

Abstract: We utilize neural network embeddings to detect data drift by formulating the drift detection within an appropriate sequential decision framework. This enables control of the false alarm rate although the statistical tests are repeatedly applied. Since change detection algorithms naturally face a tradeoff between avoiding false alarms and quick correct detection, we introduce a loss function which evaluates an algorithm's ability to balance these two concerns, and we use it in a series of experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.