Moody Learners -- Explaining Competitive Behaviour of Reinforcement Learning Agents
Abstract: Designing the decision-making processes of artificial agents that are involved in competitive interactions is a challenging task. In a competitive scenario, the agent does not only have a dynamic environment but also is directly affected by the opponents' actions. Observing the Q-values of the agent is usually a way of explaining its behavior, however, do not show the temporal-relation between the selected actions. We address this problem by proposing the \emph{Moody framework}. We evaluate our model by performing a series of experiments using the competitive multiplayer Chef's Hat card game and discuss how our model allows the agents' to obtain a holistic representation of the competitive dynamics within the game.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.