Papers
Topics
Authors
Recent
2000 character limit reached

A Note on Particle Gibbs Method and its Extensions and Variants (2007.15862v2)

Published 31 Jul 2020 in stat.CO and stat.AP

Abstract: High-dimensional state trajectories of state-space models pose challenges for Bayesian inference. Particle Gibbs (PG) methods have been widely used to sample from the posterior of a state space model. Basically, particle Gibbs is a Particle Markov Chain Monte Carlo (PMCMC) algorithm that mimics the Gibbs sampler by drawing model parameters and states from their conditional distributions. This tutorial provides an introductory view on Particle Gibbs (PG) method and its extensions and variants, and illustrates through several examples of inference in non-linear state space models (SSMs). We also implement PG Samplers in two different programming languages: Python and Rust. Comparison of run-time performance of Python and Rust programs are also provided for various PG methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.