Papers
Topics
Authors
Recent
2000 character limit reached

Homotopy ribbon concordance, Blanchfield pairings, and twisted Alexander polynomials

Published 30 Jul 2020 in math.GT | (2007.15289v2)

Abstract: We establish homotopy ribbon concordance obstructions coming from the Blanchfield form and Levine-Tristram signatures. Then, as an application of twisted Alexander polynomials, we show that for every knot K with nontrivial Alexander polynomial, there exists an infinite family of knots that are all concordant to K and have the same Blanchfield form as K, such that no pair of knots in that family is homotopy ribbon concordant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.