Papers
Topics
Authors
Recent
Search
2000 character limit reached

ConceptExplorer: Visual Analysis of Concept Driftsin Multi-source Time-series Data

Published 30 Jul 2020 in cs.HC and cs.GR | (2007.15272v2)

Abstract: Time-series data is widely studied in various scenarios, like weather forecast, stock market, customer behavior analysis. To comprehensively learn about the dynamic environments, it is necessary to comprehend features from multiple data sources. This paper proposes a novel visual analysis approach for detecting and analyzing concept drifts from multi-sourced time-series. We propose a visual detection scheme for discovering concept drifts from multiple sourced time-series based on prediction models. We design a drift level index to depict the dynamics, and a consistency judgment model to justify whether the concept drifts from various sources are consistent. Our integrated visual interface, ConceptExplorer, facilitates visual exploration, extraction, understanding, and comparison of concepts and concept drifts from multi-source time-series data. We conduct three case studies and expert interviews to verify the effectiveness of our approach.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.