2000 character limit reached
Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds (2007.14669v2)
Published 29 Jul 2020 in math.DG
Abstract: In this paper, we consider the non-linear general $p$-Laplacian equation $\Delta_{p,f}u+F(u)=0$ for a smooth function $F$ on smooth metric measure spaces. Assume that a Sobolev inequality holds true on $M$ and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.