Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Gradient estimates for weighted $p$-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds (2007.14669v2)

Published 29 Jul 2020 in math.DG

Abstract: In this paper, we consider the non-linear general $p$-Laplacian equation $\Delta_{p,f}u+F(u)=0$ for a smooth function $F$ on smooth metric measure spaces. Assume that a Sobolev inequality holds true on $M$ and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.