Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning with Context-Agnostic Initialisations (2007.14658v2)

Published 29 Jul 2020 in cs.CV

Abstract: Meta-learning approaches have addressed few-shot problems by finding initialisations suited for fine-tuning to target tasks. Often there are additional properties within training data (which we refer to as context), not relevant to the target task, which act as a distractor to meta-learning, particularly when the target task contains examples from a novel context not seen during training. We address this oversight by incorporating a context-adversarial component into the meta-learning process. This produces an initialisation for fine-tuning to target which is both context-agnostic and task-generalised. We evaluate our approach on three commonly used meta-learning algorithms and two problems. We demonstrate our context-agnostic meta-learning improves results in each case. First, we report on Omniglot few-shot character classification, using alphabets as context. An average improvement of 4.3% is observed across methods and tasks when classifying characters from an unseen alphabet. Second, we evaluate on a dataset for personalised energy expenditure predictions from video, using participant knowledge as context. We demonstrate that context-agnostic meta-learning decreases the average mean square error by 30%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.