Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Iterative LQR Controller for Off-Road and On-Road Vehicles using a Neural Network Dynamics Model

Published 28 Jul 2020 in cs.RO, cs.LG, cs.SY, and eess.SY | (2007.14492v1)

Abstract: In this work we evaluate Iterative Linear Quadratic Regulator(ILQR) for trajectory tracking of two different kinds of wheeled mobile robots namely Warthog (Fig. 1), an off-road holonomic robot with skid-steering and Polaris GEM e6 [1], a non-holonomic six seater vehicle (Fig. 2). We use multilayer neural network to learn the discrete dynamic model of these robots which is used in ILQR controller to compute the control law. We use model predictive control (MPC) to deal with model imperfections and perform extensive experiments to evaluate the performance of the controller on human driven reference trajectories with vehicle speeds of 3m/s- 4m/s for warthog and 7m/s-10m/s for the Polaris GEM

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.