Papers
Topics
Authors
Recent
Search
2000 character limit reached

The structure of finite commutative idempotent involutive residuated lattices

Published 28 Jul 2020 in math.LO | (2007.14483v4)

Abstract: We characterize commutative idempotent involutive residuated lattices as disjoint unions of Boolean algebras arranged over a distributive lattice. We use this description to introduce a new construction, called gluing, that allows us to build new members of this variety from other ones. In particular, all finite members can be constructed in this way from Boolean algebras. Finally, we apply our construction to prove that the fusion reduct of any finite member is a distributive semilattice, and to show that this variety is not locally finite.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.