Papers
Topics
Authors
Recent
2000 character limit reached

Automated Database Indexing using Model-free Reinforcement Learning

Published 25 Jul 2020 in cs.DB and cs.AI | (2007.14244v1)

Abstract: Configuring databases for efficient querying is a complex task, often carried out by a database administrator. Solving the problem of building indexes that truly optimize database access requires a substantial amount of database and domain knowledge, the lack of which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing database performance for querying and certainly degrading performance for updating. We develop an architecture to solve the problem of automatically indexing a database by using reinforcement learning to optimize queries by indexing data throughout the lifetime of a database. In our experimental evaluation, our architecture shows superior performance compared to related work on reinforcement learning and genetic algorithms, maintaining near-optimal index configurations and efficiently scaling to large databases.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.