Papers
Topics
Authors
Recent
2000 character limit reached

SADet: Learning An Efficient and Accurate Pedestrian Detector

Published 26 Jul 2020 in cs.CV | (2007.13119v1)

Abstract: Although the anchor-based detectors have taken a big step forward in pedestrian detection, the overall performance of algorithm still needs further improvement for practical applications, \emph{e.g.}, a good trade-off between the accuracy and efficiency. To this end, this paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector, forming a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection, which includes three main improvements. Firstly, we optimize the sample generation process by assigning soft tags to the outlier samples to generate semi-positive samples with continuous tag value between $0$ and $1$, which not only produces more valid samples, but also strengthens the robustness of the model. Secondly, a novel Center-$IoU$ loss is applied as a new regression loss for bounding box regression, which not only retains the good characteristics of IoU loss, but also solves some defects of it. Thirdly, we also design Cosine-NMS for the postprocess of predicted bounding boxes, and further propose adaptive anchor matching to enable the model to adaptively match the anchor boxes to full or visible bounding boxes according to the degree of occlusion, making the NMS and anchor matching algorithms more suitable for occluded pedestrian detection. Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images ($640 \times 480$) on challenging pedestrian detection benchmarks, i.e., CityPersons, Caltech, and human detection benchmark CrowdHuman, leading to a new attractive pedestrian detector.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.