Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Fusion on Belief Networks (2007.12989v1)

Published 25 Jul 2020 in cs.AI

Abstract: This paper will focus on the process of 'fusing' several observations or models of uncertainty into a single resultant model. Many existing approaches to fusion use subjective quantities such as 'strengths of belief' and process these quantities with heuristic algorithms. This paper argues in favor of quantities that can be objectively measured, as opposed to the subjective 'strength of belief' values. This paper will focus on probability distributions, and more importantly, structures that denote sets of probability distributions known as 'credal sets'. The novel aspect of this paper will be a taxonomy of models of fusion that use specific types of credal sets, namely probability interval distributions and Dempster-Shafer models. An objective requirement for information fusion algorithms is provided, and is satisfied by all models of fusion presented in this paper. Dempster's rule of combination is shown to not satisfy this requirement. This paper will also assess the computational challenges involved for the proposed fusion approaches.

Summary

We haven't generated a summary for this paper yet.