Papers
Topics
Authors
Recent
2000 character limit reached

Non-parallel Emotion Conversion using a Deep-Generative Hybrid Network and an Adversarial Pair Discriminator

Published 25 Jul 2020 in eess.AS, cs.LG, and cs.SD | (2007.12932v2)

Abstract: We introduce a novel method for emotion conversion in speech that does not require parallel training data. Our approach loosely relies on a cycle-GAN schema to minimize the reconstruction error from converting back and forth between emotion pairs. However, unlike the conventional cycle-GAN, our discriminator classifies whether a pair of input real and generated samples corresponds to the desired emotion conversion (e.g., A to B) or to its inverse (B to A). We will show that this setup, which we refer to as a variational cycle-GAN (VC-GAN), is equivalent to minimizing the empirical KL divergence between the source features and their cyclic counterpart. In addition, our generator combines a trainable deep network with a fixed generative block to implement a smooth and invertible transformation on the input features, in our case, the fundamental frequency (F0) contour. This hybrid architecture regularizes our adversarial training procedure. We use crowd sourcing to evaluate both the emotional saliency and the quality of synthesized speech. Finally, we show that our model generalizes to new speakers by modifying speech produced by Wavenet.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.