Papers
Topics
Authors
Recent
2000 character limit reached

Hallucinating Saliency Maps for Fine-Grained Image Classification for Limited Data Domains

Published 24 Jul 2020 in cs.CV and cs.NE | (2007.12562v3)

Abstract: Most of the saliency methods are evaluated on their ability to generate saliency maps, and not on their functionality in a complete vision pipeline, like for instance, image classification. In the current paper, we propose an approach which does not require explicit saliency maps to improve image classification, but they are learned implicitely, during the training of an end-to-end image classification task. We show that our approach obtains similar results as the case when the saliency maps are provided explicitely. Combining RGB data with saliency maps represents a significant advantage for object recognition, especially for the case when training data is limited. We validate our method on several datasets for fine-grained classification tasks (Flowers, Birds and Cars). In addition, we show that our saliency estimation method, which is trained without any saliency groundtruth data, obtains competitive results on real image saliency benchmark (Toronto), and outperforms deep saliency models with synthetic images (SID4VAM).

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.