Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Discovery of 3D Physical Objects from Video (2007.12348v3)

Published 24 Jul 2020 in cs.CV and cs.LG

Abstract: We study the problem of unsupervised physical object discovery. While existing frameworks aim to decompose scenes into 2D segments based off each object's appearance, we explore how physics, especially object interactions, facilitates disentangling of 3D geometry and position of objects from video, in an unsupervised manner. Drawing inspiration from developmental psychology, our Physical Object Discovery Network (POD-Net) uses both multi-scale pixel cues and physical motion cues to accurately segment observable and partially occluded objects of varying sizes, and infer properties of those objects. Our model reliably segments objects on both synthetic and real scenes. The discovered object properties can also be used to reason about physical events.

Citations (35)

Summary

We haven't generated a summary for this paper yet.