Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User-driven Analysis of Longitudinal Health Data with Hidden Markov Models for Clinical Insights (2007.12346v1)

Published 24 Jul 2020 in cs.HC

Abstract: A goal of clinical researchers is to understand the progression of a disease through a set of biomarkers. Researchers often conduct observational studies, where they collect numerous samples from selected subjects throughout multiple years. Hidden Markov Models (HMMs) can be applied to discover latent states and their transition probabilities over time. However, it is challenging for clinical researchers to interpret the outcomes and to gain insights about the disease. Thus, this demo introduces an interactive visualization system called DPVis, which was designed to help researchers to interactively explore HMM outcomes. The demo provides guidelines of how to implement the clinician-in-the-loop approach for analyzing longitudinal, observational health data with visual analytics.

Summary

We haven't generated a summary for this paper yet.