Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Number of Affine Equivalence Classes of Boolean Functions (2007.12308v2)

Published 24 Jul 2020 in math.CO, cs.IT, and math.IT

Abstract: Let $R(r,n)$ be the $r$th order Reed-Muller code of length $2n$. The affine linear group $\text{AGL}(n,\Bbb F_2)$ acts naturally on $R(r,n)$. We derive two formulas concerning the number of orbits of this action: (i) an explicit formula for the number of AGL orbits of $R(n,n)$, and (ii) an asymptotic formula for the number of AGL orbits of $R(n,n)/R(1,n)$. The number of AGL orbits of $R(n,n)$ has been numerically computed by several authors for $n\le 10$; result (i) is a theoretic solution to the question. Result (ii) answers a question by MacWilliams and Sloane.

Citations (2)

Summary

We haven't generated a summary for this paper yet.