Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The number of extended irreducible binary Goppa codes (2204.02083v1)

Published 5 Apr 2022 in cs.IT and math.IT

Abstract: Goppa, in the 1970s, discovered the relation between algebraic geometry and codes, which led to the family of Goppa codes. As one of the most interesting subclasses of linear codes, the family of Goppa codes is often chosen as a key in the McEliece cryptosystem. Knowledge of the number of inequivalent binary Goppa codes for fixed parameters may facilitate in the evaluation of the security of such a cryptosystem. Let $n\geq5$ be an odd prime number, let $q=2n$ and let $r\geq3$ be a positive integer satisfying $\gcd(r,n)=1$. The purpose of this paper is to establish an upper bound on the number of inequivalent extended irreducible binary Goppa codes of length $q+1$ and degree $r$.A potential mathematical object for this purpose is to count the number of orbits of the projective semi-linear group ${\rm PGL}2(\mathbb{F}_q)\rtimes{\rm Gal}(\mathbb{F}{qr}/\mathbb{F}_2)$ on the set $\mathcal{I}r$ of all monic irreducible polynomials of degree $r$ over the finite field $\mathbb{F}_q$. An explicit formula for the number of orbits of ${\rm PGL}_2(\mathbb{F}_q)\rtimes{\rm Gal}(\mathbb{F}{qr}/\mathbb{F}_2)$ on $\mathcal{I}_r$ is given, and consequently, an upper bound for the number of inequivalent extended irreducible binary Goppa codes of length $q+1$ and degree $r$ is derived. Our main result naturally contains the main results of Ryan (IEEE-TIT 2015), Huang and Yue (IEEE-TIT, 2022) and, Chen and Zhang (IEEE-TIT, 2022), which considered the cases $r=4$, $r=6$ and $\gcd(r,q3-q)=1$ respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.